Разложение функций в ряд

Материал из Энциклопедия Многополярностей
Перейти к навигации Перейти к поиску
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Оценим возможности рядов.

1. Полярность в ряд разложить нельзя. Её можно получить взаимоотношениями других полярностей, а это – алгебра.

2. В ряд можно разложить только однополярные количества.

3. По этим причинам современные функциональные ряды следует пересмотреть.

Вот пример сегодняшнего определения: Ряд Тейлора — разложение функции в бесконечную сумму степенных функций. Ряд назван в честь английского математика Брука Тейлора.

Пусть функция f(x) бесконечно дифференцируема в некоторой окрестности точки a , тогда ряд

Math fileP1.jpg

называется рядом Тейлора функции f в точке a.

В случае, если a = 0, то этот ряд называется рядом Маклорена.

Если f есть аналитическая функция, то её ряд Тейлора в любой точке a области определения f сходится к f в некоторой окрестности a.

Как видим, некоторое a получило полярность.

Более того, есть ещё «остаточные члены»:

Остаточные члены в форме Лагранжа, Коши и Пеано

В форме Лагранжа:

Math fileP2.jpg

Тогда формула Тейлора с остаточным членом в форме Лагранжа будет:

Math fileP5.jpg где

Math fileP51.jpg

В форме Коши:

Math fileP3.jpg

Изменим предположения:

• Пусть функция f (x) имеет n – 1 производную в некоторой окрестности точки a

• Пусть n имеет производную в самой точке a,

тогда:

Math fileР4.jpg

- остаточный член в форме Пеано.