Действительные числа. Двухполярность

Материал из Энциклопедия Многополярностей
Перейти к навигации Перейти к поиску
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Действительные числа

Двухполярные числа исторически названы "действительными числами". Такие числа и соответственно двухполярно формализованные объекты относятся к локе 2. Законы отношений между полярностями будут:

а) (+)*(+) = +,

б) (-)*(-) = +,

в) (+)*(-) = -.

г) (-)*(+) = -.

Здесь * - некоторый вид взаимодействий. Например, можно записать для поляризованного объекта +А - А = 0 , где "ноль" (0) выполняет роль единицы такой, что (0)*(0) = 0 (, к примеру 0 + 0 = 0. Полярность "минус" (-) обратная сама себе так, что (-)*(-) = +, где + выполняет роль "единицы" такой, что (+)*(+) = +.

Алгебра действительных чисел хорошо известна из математики, состоявшейся до ХХI века.

Однако с появлением понятий о поляризованных объектах мышления следует помнить, что взаимодействие полярностей и поляризованных чисел не следует смешивать. Например, (+5)(-3) = -15. Эдесь взаимодействие полярностей (+)*(-) = - происходит раздельно от самих чисел 5*3 = 15. К сожалению эта путаница происходит у математиков и по сей день.

Бывает, что соотносится число полярностей. Например, +5 - 3 = +2 , то есть число полярностей + уменьшилось до +2. Взаимодействие между полярностями и поляризованными объектами составляет различные виды связей. В конечном итоге, это определяет вид связей.

Двухполярное пространство "шире", чем действительные числа. Более того, законы отношений в таком пространстве доказываются на базе аксиом. Система аксиом взята так, что обычно проходит в современном мышлении как "само собой", то есть математики это не выделяют в предлагаемые ими аксиомы. Аксиомы же математиков ДОКАЗЫВАЮТСЯ.

Двухполярность

Плоскостная поляризация

В этой локе только две полярности А и В. Третьего не дано. Отношение в такой локе будет А + В = А или В. Если А + В = А, то появляется альтернативная лока А + В = В. Никаких привычных переносов через знак равенства здесь нет. Если А + В = А, то В выполняет роль «нулевого» объекта, то есть В ≡ 0.

Теорема 1.

В двухполярном пространстве «плоских» локальностей законы отношений между полярностями будут:

а) А + В = А, в) 2nА = В, с) В + В = В, d) (2n - 1)А = А, где n - число.

Доказательство.

1.Согласно аксиомам 2 и 3 для А + В в соответствие выбираем А, то есть А + В = А.

2.Тогда А + А = В, так как иначе А ≡ В. В + В = В либо А. Если В + В = А, то А ≡ В.

3.Остаётся В + В = В. Это можно обозначить как 0 + 0 = 0.

4.Если А + А = В, то А + А + А = А, так как А + В = А.

5.Соответственно А + А + А + А = В.

6.По индукции получим для нечётного числа А + А + …+ А = А. Для чётного числа А + А + …+ А = В.

Иначе, можно записать А +А = 0, А + А + А = А, 0 + 0 = 0. В общем 2nА = 0, (2n - 1)А = А. n0 = 0. Такая лока управляет количеством. Например, если 5А + 7А = 12А, то есть 5А + 7А = 0. 6А + 9А = А.

Пример 1.

А + А + А = А будет «Ты это другое твоего друга».

Примечание.

Альтернативность А + В = В даёт формально те же самые законы отношений, но, с позиций овеществления, альтернативные локи, где роль 0 занимает либо А, либо В не безразлично. Альтернативные локи взаимно уничтожают друг друга тем, что при их объединении выполнится А ≡ В.

Объёмная поляризация

1. Согласно аксиомам 1 обозначим полярные объекты А и В. Третьего не дано.

2. Согласно аксиомам 2 и 3 эти объекты будут взаимодействовать с постановкой в соответствие некоторого объекта:

а) (А)*(В) = (А), или (В) так как третьего не дано;

в) (А)*(А) = (А), или (В);

с) (В)*(В) = (А), или (В).

  • Теорема 7.

Если в двухполярной локе при взаимодействии объектов А и В результатом будет А, то (А)*(А) = (В), а так же (В)*(В) = (В).

Доказательство.

1. По условию (А)*(В) = А. Тогда (А)*(А) не может дать в результате А, иначе мы придём к противоречию А ≡ В. Поэтому (А)*(А) = В. Здесь ≡ знак тождества.

2. В свою очередь (В)*(В) не может дать результатом В, иначе, если (В)*(В) = А, то при учёте условия будет А ≡ В. Это противоречит аксиоме 1.

3. Имеем непротиворечивыми высказывания:

а) (А)*(В) = А;

б) (А)*(А) = В;

в) (В)*(В) = В.

Пример 1.

Аналогом этому являются законы отношений в алгебре действительных чисел. Если В ≡ (+), а также А ≡ (−), то по пункту 3 будет:

а) (+)*(−) = (−); б) (−)*(−) = (+); в) (+)*(+*) = (+).

Кстати, случай б) выделяется в математике как «двойные числа». Здесь кроется та слепота, когда количества и поныне не различают от полярностей, то есть качеств.

Пример 2.

Соответствие этому мы найдём в линейном мышлении. Если А это поляризация отрицательного «зло», «враг», «несчастье», «болезнь» и т.п., а так же В имеет положительную поляризацию «добро», «друг», счастье», «здоровье» и т.п., то согласно пункта 3 будет например:

а) «болезнь друзей это плохо» или «зло в среде друзей это плохо» и т.п.;

б) «болезнь врагов это хорошо» или «зло в стане врагов это хорошо» и т.п.;

в) «здоровье друзей это хорошо» и т.п.

Пример 3.

Если взять А ≡ «отрицанию»; В ≡ «утверждению», то «отрицание отрицания есть утверждения» (Закон логики).

Пример 4.

Единица здесь кроме роли – остановки процесса мышления – играет роль «нейтрального» объекта. Например, из (А)*(☼) = А будет, к примеру «человек в бесконечном Космосе» = «человек».

  • Теорема 8.

Двухполярная лока имеет да «зеркальных» вида.

Доказательство.

1. В предыдущем условии (А)*(В) = А взято произвольно. Вполне вероятно будет (А)*(В) = В.

2. В свою очередь по этому условию (А)*(А) не может дать результатом В, иначе, А ≡ В. Следовательно, (А)*(А) = А, так как третьего не дано.

3. Остаётся (В)*(В), которое не может быть равноценным В, иначе А ≡ В. Значит (В)*(В) = А.

4. Имеем непротиворечивыми в системе и «зеркальные» по отношению к пункту 3 теоремы 1 высказывания:

а) (А)*(В) = В;

б) (А)*(А) = А;

в) (В)*(В) = А.

Примечание: В математике системы отношений п.3 теоремы 1 и п.4 теоремы 2 называют изоморфными и сбрасывают на тождество. Однако, как вы увидите на примере 4, система 4 теоремы 2 имеет жизненное значение.

Пример 5.

В символах «положительной» и «отрицательной» поляризаций и взятии значений «убийство», «соперник», «несчастье» и т.п. как «отрицательные», а «благополучие», «друзья», «развитие» и т. п., как «положительные» будем иметь:

а) «невзгоды друзей это хорошо»;

б) «болезнь врагов это плохо»;

в) «благополучие друзей ведёт их к деградации».

Логика таких высказываний очевидна по опыту жизни, когда мудрому становится понятно, что враги и соперники развивают; друзья «убаюкивают» бдительность. Благополучие лишает человека шанса развиваться. Эти правила используются при воспитании молодёжи в монастырях.

  • Теорема 9.

Альтернативные системы отношений полярных объектов в двухполярной локе взаимно исключают друг друга.

Доказательство.

1. Имеем две возможных системы:

А).

а) (А)*(В) = В;

б) (А)*(А) = А;

в) (В)*(В) = А.

В).

а) (А)*(В) = А;

б) (А)*(А) = В;

в) (В)*(В) = В

2. Если взять высказывания на сопоставление, то они полярно противоположные так, что получим А ≡ В, что исключено по аксиоме 1.

Сопоставление.

Системы А) и В) можно для наглядности представить в виде привычных полярностей «плюс» и «минус». Соответственно будем иметь:

1А)

а) (+)*(−) = (−);

б) (−)*(−) = (+);

в) (+)*(+*) = (+).

2А)

а) (+)*(−) = (+);

б) (−)*(−) = (−);

в) (+)*(+) = (−).

Примечание 1. Система 1А) распространена в современной науке. Система 2А) в науке не встречается. Высказывания, соответствующие системе 2А), можно встретить в религиях, высказываниях мудрецов, нравственных устоях по принципу «не убий».

Примечание 2. Система 1А) пронизывает всю науку цивилизации и является её ядром. Она не только в математике, но и в логиках разных видов, так как любая из существующих логик содержит в себе двухполярные законы отношений и свойства линейного ума.

Естественные науки и техника также заложили в основу двухполярность. Даже в современных компьютерах физической базой является «положительный» и «отрицательный» электрические потенциалы.

Пример 6.

В пример взаимного исключения высказываний двух зеркальных лок можно привести: 1А) «Тот, кто уничтожает врагов, тот герой»; 2А) «Тот, кто уничтожает врагов, тот остаётся убийцей». При совмещении этих высказываний получится «герой он и есть убийца».