Алгебра

Материал из Энциклопедия Многополярностей
Перейти к навигации Перейти к поиску
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Ревизия

История

Развитие научной мысли двигалось так, что постепенно поляризация объектов мышления в математике увеличивалась. Сначала ввели «отрицательные» числа. Это тут же чётко выделило «абсолютные» числа как не поляризованное. Фактически абсолютные и натуральные числа это одно и то же, то есть не поляризованные числа. К сожалению, «абсолютные» числа склеили с «положительными». Это стало тормозить развитие полярных отношений.

В арифметике появляется три полярности +, -, 0, но в «умножении» ещё две: +, –, так, что а) (+)*(+) = +, б) (+)*(–) = –, в) (–)*(+) = –, г) (–)*(–) = +.

Алгебра добавляет деление и тем самым, третью полярность в «умножении». Из а/а = 1 ещё не следует поляризации, но а/-а = -1, уже появляется +, –, е, Здесь элемент е вытесняет предыдущий +. Если в алгебре «действительных чисел» (+)*(+) = +, то теперь в теории групп (е)*(е) = е. Дали название е как «единица».

Появилась необходимость ввести термин «идемпотентный элемент». Вместе с арифметикой будет: 0 + 0 = 0, (+)*(+) = +, (е)*(е) = е. Заметили ли математики, что деление и появление «единицы» увеличило число полярностей с двух до трёх? Нет.

Следующим ходом к арифметическим трём полярностям +, –, 0 добавляются «мнимые» числа, как следствие необходимости извлекать «корень квадратный» из отрицательно поляризованных чисел. От неожиданности новые числа назвали «мнимыми». Как и деление, извлечение корня «растягивает» область полярных чисел. Теперь появляются «кватернионы». Четыре полярности ί, j, k, + составляют четырёхполярное пространство.

У.Гамильтон изобретает «кватернионы» путем введения в суперпозицию трёх изоморфных систем «комплексных» чисел, но с огромным противоречием в самой системе отношений. Напрасно математики спасали эту систему, так как в ней доказвается, что + = – , ί = –ί, j = –j, k = – k . Никакая альтернативность умножения эту систему не спасёт. Иначе, можно изобретать всё, что хочешь, нарушая принцип математики – аксиоматичность и чёткость доказательств.

Три фактора сковали творческую мысль математиков: а) арифметика, которая напрямую связана с действительностью (поэтому числа четырёхполярности назвали «мнимыми»); б) невнимательность, поэтому не заметили даже то, что деление и извлечение корня увеличивает число полярностей; в) неаккуратность, по причине которой, законы, полученные в найденном варианте отношений, тут же подражанием распространялись во все области математики.

Натуральные числа это не «положительные» числа. «Положительное» число поляризовано в совокупности с «отрицательным». Поэтому, безотносительные 15 лошадей могут поляризоваться так, что 10 лошадей «моих», а 5 лошадей «чужие». Если мы производим операцию 15 – 5 = + 10, так как +10 и – 5 уже поляризованные числа. Безотносительные числа лучше называть «натуральными».

Пока в арифметике безотносительное констатирование факта наблюдений (15 лошадей, три озера, двадцать журавлей), то там нет алгебры. Но уже в арифметике начинается вычитание, то есть тут же числа поляризуются. Алгебра имеет дело не с натуральными, а с поляризованными объектами и числами. Натуральные числа тут безынтересные.

Великая ли Великая теорема Ферма?

Великая теорема Ферма (также Последняя Теорема Ферма) утверждает что «для любого целого числа n > 2 уравнение File.jpg не имеет положительных целых решений a, b, c. »

Это, наверное, самая знаменитая теорема во всей математике. Теорема была сформулирована Пьером Ферма в 1637 на полях книги «Арифметика» Диофанта с припиской, что найденное им остроумное доказательство этой теоремы слишком длинно, чтобы его можно было здесь поместить. История Великой теоремы Ферма неразрывно связана с историей математики, так как затрагивает все основные темы теории чисел.

И всё же, великая ли Великая теорема?

Когда Пифагор доказывал свою теорему о прямоугольном треугольнике в котором FileP.jpg где a, b – катеты, c – гипотенуза, то он брал натуральные числа площади. Другое дело – алгебра. Например, для нахождения катета придётся применить отрицательные числа. Извлечение корня квадратного даст нам два катета «положительный» и «отрицательный». Гипотенуза тоже может быть «положительной» и «отрицательной». Это означает, что в пространстве находятся не один, а два треугольника, то есть треугольник «расщепился». При доказательствах теоремы Ферма каждый математик использовал алгебру поляризованных чисел, а не натуральные числа. Подгонка? Не исключено. Скорее, неосмысленное оперирование. В итоге теорема Пифагора к алгебрам не имеет отношения, так как математики упражнялись не с натуральными величинами площадей, а с поляризованными числами.

Ну, а, если алгебра будет не двухполярной? Тогда мы получим не два треугольника со сторонами + и – , как в двухполярных преобразованиях имели математики 369 лет, а три треугольника.

  • 1. Возьмём трёхполярное пространство, то есть «расщепим» треугольник не на два, как это делают математики, а на три. Тогда, вместо полярностей +, – обозначим три полярности: + ,ί, j. В такой алгебре File2.jpg, а так же (ί)*(j) = +.
  • 2. Проведём такие математические преобразования, чтобы охватить несколько разделов математики (дабы не тратить впустую время на каждый раздел).

а) К тригонометрическим функциям: (cos x +sin x)*(cos x +ί sin x)*(cos x +j sin x) File10.jpg,

b) К показательной функции: File3.jpg.

с) В связи этих функций :

File4.jpg,

File6.jpg,

File9.jpg,

d) Окончательно из a), b), c) получим File5.jpg.

е) Поскольку cos x = b/c, sin x = а/c , где a, b – катеты, с – гипотенуза, то заменим формулу d).

f) В итоге получим: File7.jpg.

  • 3. Аналогично легко доказать для алгебр с нечётным числом полярностей.

File11.jpg.

Это опровергает «Великую» теорему Ферма.

Иными словами, теорема Ферма остаётся Великой лишь в частном случае алгебры двухполярных отношений. А, так как, полярных пространств очень много, то Великое превращается в малое и частный случай.

  • Примечание.

Поступило возражение, что экспонента в степенн х не есть cosx + sinx. Замечание можно принять только щадя привычки тех, кто прикрепил себя к законам двухполярной математики. Можете взять i, j, k так, что i + j + k = 0 . Затем написать соответственно экспоненты в степенях iх, jх, kх. Теперь получите опровержение "Великой" Теоремы Ферма.

Кстати, это возражение заслуживает внимание в том, что отныне обязательно найдётся лока, в которой выполнятся "невыполнимые" преобразования. Например, можно доказать, что четвёртые степени а и b в сумме дают с в четвёртой степени: File17.jpg. Этим будет показано, что Великая Теорема Ферма не состоятельна и для чётных степеней чисел.

Особо подчеркну, что речь не идёт о мнимых числах или специальных cosx и sinx . Речь идёт о пространствах, отличающихся от двухполярного. Там всё такое же действительное. О таких пространствах см. раздел Геометрия.

Анализ

По сути, алгебра это взаимодействие лок с разными видами связей. Например, +7 - 7 = 0 это фрагмент плоскостной локи 3. Трёхполярное пространство вошло в алгебру "действительных чисел" как составная часть. В то же время при делении +7 : -7 = -1 это фрагмент локи 3 объёмной поляризации.

Однако в алгебре "действительных чисел" используется сочетание: трёхполярное пространство в "сложении" такое, что +а - а = 0, и двухполярное - в "умножении" такое, что а) (+)*(+) = +, б) (+)*(-) = -, в) (-)*(+) = -, г) (-)*(-) = +

Отсюда алгебра таких лок будет, например, (а - в)*(-с) = - аc + вс . Конечно, закон дистрибутивности выведен на базе арифметического опыта и обобщен в алгебре.

Имея не внимательный опыт предшественников, к видам взаимодействия подойдём аккуратно. Например, из а + в = с, совершая перенос через знак равенства, знак числа меняют на обратный, то есть а = в - с. Это правило не правомерно в иных локах.

Внимание! Особо напомню, что всякий раз мы имеем дело с натуральными числами и объектами. Поэтому названия "действительные числа", "комплексные числа" пусть вас не смущают. Так математики назвали двухполярные и четырёхполярные натуральные числа. Никакой "мнимости" в таких числах нет. Есть поляризованность чисел и объектов, относящая к тому или иному пространству, с тем или иным числом полярностей.

Алгебра полярностей

1. Возьмём в пример некоторые полярности ί, j, k, 0 в плоскостной поляризации и ί, j, k, ☼ в объёмной поляризации. В этих локах, так же как и в трёхполярных, где +1 - 1 = 0 (здесь полярности +, -, 0)будет 1ί + 1j + 1k = 0 . Произвольно выберем суперпозиционную локу 4. Здесь (ί)*(ί) = +, (j)*(j) = +, (k)*(k) = + , (ί)*(j)*(k) = +.

2 Проведём алгебраическое преобразование, например (1ί + 1j + 1k)*(1ί + 1j + 1k) = +3. Иными словами, возведение в степень и проведение алгебраических преобразований привело нас к числу 3. Если по условию 1ί + 1j + 1k = 0, то фактически мы провели операцию (0)*(0) = +3 , где + - единица в суперпозиционной локе 4.

3. Итак, слепо следовать правилу в умножении 0х0 = 0 тоже не следует.

Прикладные алгебры

Так уж повелось, что не разобравшись с тем, что математика имеет в алгебре "действительных чисел" дело с поляризованным пространством, стали применять двухполярную алгебру и в естественных науках.

Откликнется ли физика, или, например, релятивистская механика, на двухполярность? Сомнительно, что вся Вселенная поляризована только на два вида полярностей.

Взять, к примеру, Теорию Относительности А.Эйнштейна. Там сразу же постулируется с + с = С. Иными словами, скорость света приобретает роль единицы. Но увы, применяются в преобразованиях Лоренца операции алгебры "действительных чисел", то есть алгебры двухполярных отношений. Более того, в преобразованиях извлекается квадратный корень, а это "расщепляет" пространство до четырёх полярностей. Получается по преобразованиям Лоренца, что свет "перетекает" из двухполярное пространство в четырёхполярное.

Единицаимеет место в каждом пространстве с любым числом полярностей. Эйнштейн не определил само пространство. В качестве оговорки замечу, что область света принадлежит анализатору зрения, где выполняются не двухполярные, а, как минимум, трёхполярные законы.

Проведём преобразование "перетекания" из трёхполярного в шестиполярное пространство.

Соответственно, преобразования Лоренца запишем так, что х = γ(х + vt),будет поляризоваться не на + и -, а на +, ί, j, то есть, например, Х = (х + ίvt). Так как х = ct, то для полярности, например ί будет ct = (ct + ίvt). Как и в примере с теоремой Ферма, решая систему уравнений, получим File12.jpg.

После несложных преобразований (см. Основы многополярности), получим коэффициент преобразования пространства и времени. File13.jpg.

Окончательно при v = c, то есть при достижении объектом скорости света будет: File14.jpg.

Вновь мы встречаемся с неожиданным результатом. Оказывается, что при приближении скорости движущегося тела к скорости света нет никакого парадокса близнецов . Нет и стремления времени к нулю . Нет бесконечной массы. Так что фантазёры поторопились. Почему? Область существования света -вовсе не двухполярное пространство.

Многоликость света (семиполярного пространства) такова, что он некоторым образом и весьма частично содержит двойственные отношения, но в иной форме, чем предлагает алгебра "действительных чисел" и преобразования Лоренца и Минковского (четырёхмерный континиум). Поэтому некоторым образом свет может "искривляться" в магнитном поле земли.

Конечно, искажения, как и должно быть при переходах из пространство в пространство, есть. Но оно чётко соизмеримое.



Многополярные алгебры